* Learned a lot about the performance
D3D12 Future of D3D12 engine with Nitrous 1.0

VR and beyond

 What does a second gen
D3D12/Vulkan engine look like?

 Direct control of synchronization
primitives: gives us control where

we need it

« Multi Core rendering: allow for
lower latency

* More complex mukengine (aka
asynccompute): allows high
efficiency for VR

Lan baker uxide Games

New challenges,
* Average FPS not a useful metric new terms

* Must run at 90, consistently

* How to measure performance of an Engine on a
given System?

« CPU speed all the stuff that a CPU has to do to
run our game scene filled with objects. Physics,
Al, skinning, simulation, gameplay etc.

 GPU speed what we need to render the scene
on a display, VR or otherwise

* App Motion to Photon Latency is known quality bar,
but how do we improve?

A better term for Need to understand

maximum load for a given

CPU performance system e.g. like max towing

for a truck, or max loaded
weight for a bridge

Number of Objects per unit
of time on a given system

POPS

Processed Objects Per Second

POPs explained

Simple concept: Many engines can become CPU
bound. Becomes increasingly difficult to run
simulations at a consistent 90 fps

90 fps is misleading, because of time to photon-
loop, every millisecond that can be eliminated
improves experience

Even if engine is fast enough to run all CPU side
work in 11 ms, a better experience if it can handle
itin far less time (e.g. 5 ms)

TLDR: higher POPS = better experience. But how do
we get a higher POPS?

Modern CPUs are fast

Eliminate:
 Arbitrary branches
* Deep call stacks
* Poor cache use

- ¢ =
! » Wi

¢ i - o
2 HTHEY .

Bkt ¢ * Do
& " —
.
X B

 SSE Instructions
= - Vector Math

Not small gains, most code could be 10x
faster!

.....

tp—

Architecture: App: Starswarm

Execution gaps due to warm up and imperfect execution of workload

Core 15
Core 14
Core 13
Core 12
Core 11
Core 10
Core 09
Core 08
Core 07
Core 06
Core 05
Core 04
Core 03
Core 02
Core 01
Core 00

Architecture: Challenge

Chains of dependent systems can cause system level serialization.

View Update j> GamePlay j} Effects E> Trails j> OSL E> Present

Delayed processing (double/triple buffering) can help address this, but at
the cost of simulation and visual fidelity. Fast moving objects, fast camera
can make this problematic.

Architecture: Ashes: Systems Midtage

Design systems to have multiple stages, useful to satisfy dependencies as
quickly as possible, as well as organize the frame better for performance.
Model Views: Multiple Phases

Msg Update Local Build GPU
Update Sim Cmds

$ <& $ <

GamePlay Effects OSL Present

Trails

Architecture: Ashes: 14k Avg Num Tasks

Manual Priming for multi-parallel execution with some signals
Modules->Update(N-Threads, &PhysicsSignal);
Projectiles->Update(N-Threads);

Core 15
Core 14
Core 13

On PhysicsSignal() Core 13
Physics->Update(N-Threads) Core 11

Core 10
—EOTE00 |
Core 08
Core 07
Core 06
Core 05
Core 04
Core 03
Core 02
Core 01
Core 00

Nitrous 2.0App as Collection of DAGs

i B

Dan Baker Oxide Games

Efficient use of
modern CPU - multicore

]
=

3,160 3170 3180
. |

* The more cores you have,
the faster a frame can be
made

Latency is reduced =
super critical for VR

+ + H + i +

GraphicsProcessAndPresent

On 16 cores, entire Frame
can be processed in just a
few MS

+ + -+ + o + + + -+ -+ -+ + H +
&
+ + + + + + + + +
@
&
R

H + +H + + + |

=]
2
H + + + g N +

 The current way: Generate 2 eyes, 90 fps GPU LatEnC\[
* Lots of waste, lots of pixels to shade dD led
 Techniques get complex trying to reduce shading, =L S

e.g. foveated rendering Shading

« Must be very careful about all sorts of aliasing,
especiallyshaderaliasing and eye to eye
exactness

e If intend to use whole GPU, end up addingrikl
of latency
* |s there a better way?
« Can we shade less frequently?
« Can we share shading work between the eyes?

« Can we guarantee that each eye has the same
shading data?

« Can we do better about not dropping frames? |exioe

Dan Baker Oxide Games

Object Space,

* Core concept —shade

a better way once, at reduced FPS
= (e.g. 30 fps) and share
Of d0|ng VR data between the eyes

* Aliasing, performance,
eye coherency, all better

Async compute

Before
to the rescue -
I I
Graphics |
) "
Performance After

11 ms

Increase | |
craphics [N N

compure [

I I
33 ms

“th Enough Bullets”

Small VR game/demo based on Nitrous 2.0
Used as our prototype for Nitrous 2.0 concepts

Space VR game with thousands of star fighters
and huge capital ships

Called Not Enough Bullets in reaction to the
sheer chaos of space battle!

Improved Latency

* VR tracking reduced to only the

rasterization portion - typically <
50% of GPU resource

* Thus, can shave off ~5-6 ms
latency

High POPS + Decoupled Shading
= App Motion to Photon
Latency

Conclusion

* Next gen APIs benefits:

« Decoupled shading can be supported
natively

« CPU overhead reduced
* Multiple cores can be effectively used

« Strict scheduling can guarantee when work
will be done

* “Not Enough Bullets” demo shows all this in
action!

