


2 GDC 2016

STEPHAN HODES
DAN BAKER

DAVE OLDCORN

GDC2016: RIGHT ON QUEUE



3 GDC 2016

80% OF THEPERFORMANCECOMESFROMUNDERSTANDING THEHARDWARE
20% COMESFROMUSINGTHEAPI EFFICIENTLY

GENERAL ADVICE



4 GDC 2016

GDC 2016

ÁDirect3D 12is designed for low CPU overhead

ÁUse multithreaded command list recording

ÁAvoid creation/destruction of heaps at runtime

ÁAvoid CPU/GPU synchronization points

DIRECT3D 12 CPUPERFORMANCE



5 GDC 2016

GDC 2016

ÁDirect3D 11drivers have been optimized over the past 8 years

ÁInitial DirectX 12ports tend to be significantly slower than DirectX 11
Redesign Engine to take full advantage of DirectX 12

AsyncQueues help to beat DirectX 11 performance

Agenda:
General Performance advice

Descriptor sets

Multiple asynchronous queues

Understanding Barriers

Memory management best practices

DIRECT3D 12 GPUPERFORMANCE



6 GDC 2016

GDC 2016

ÁIŀǊŘǿŀǊŜ ƘŀǎƴΩǘ ŎƘŀƴƎŜŘ ςDirect3D 11 advice still applies
Current AMD hardware in a nutshell:

Several Compute Units (CU)
64 on FuryX

4 SIMD per CU

Max. 10 wave fronts in flight per SIMD

64 threads per wave front

High VGPR count can limit # wave fronts
Use CodeXL: http://gpuopen.com/gaming-product/amd-codexl-analyzercli/

GCN IN A NUTSHELL

Branch & Message 
Unit Scalar Unit

Vector Units
(4x SIMD-16)

Vector Registers
(4x 64KB)

Texture Filter Units 
(4)

Local Data Share
(64KB)

L1 Cache
(16KB)

Scheduler

Texture Fetch Load / 
Store Units (16)

Scalar Registers
(4KB)

http://gpuopen.com/gaming-product/amd-codexl-analyzercli/


7 GDC 2016

GDC 2016

Most performance advice still applies

Á/ǳƭƭΥ 5ƻƴΩǘ ǎŜƴŘ ǳƴƴŜŎŜǎǎŀǊȅ ǿƻǊƪ ǘƻ ǘƘŜ Dt¦
Consider compute triangle filtering

Go see: DǊŀƘŀƳ ²ƛƘƭƛŘŀƭ ƻƴ άhǇǘƛƳƛȊƛƴƎ ǘƘŜ 
DǊŀǇƘƛŎǎ tƛǇŜƭƛƴŜ ²ƛǘƘ /ƻƳǇǳǘŜέ ƻƴ CǊƛŘŀȅ

ÁSort: Avoid unnecessary overhead
Sort draws by pipeline (and within pipeline by PS used)

Render front to back

ÁBatch, batch, batch (sorry guys)

ǎƳŀƭƭ ŘǊŀǿ Ŏŀƭƭǎ ŘƻƴΩǘ ǎŀǘǳǊŀǘŜ ǘƘŜ Dt¦

DIRECTX12 PERFORMANCE ADVICE

http://gpuopen.com/gaming-product/geometryfx/

General

http://gpuopen.com/gaming-product/geometryfx/


9 GDC 2016

GDC 2016

Add In-Engine performance counters

ÁD3D12_QUERY_TYPE_TIMESTAMP
5ƻƴΨǘstall retrievingthe results

ÁD3D12_QUERY_DATA_PIPELINE_STATISTICS 

VSInvocations/ IAVertices: Vertex Cache Efficiency
http://gpuopen.com/gaming - product/tootle/

CPrimitives/ IAPrimitives: Cull rate
http://gpuopen.com/gaming-product/geometryfx

PSInvocations/ RT resolution: Overdraw

PSInvocations/ CPrimitives: Geometry bound?
YŜŜǇ ƛƴ ƳƛƴŘ ǘƘŀǘ ŘŜǇǘƘ ƻƴƭȅ ǊŜƴŘŜǊƛƴƎ ŘƻŜǎƴΩǘ ǳǎŜ t{

Depth test reduces PSInvocations

DIRECT3D 12 PERFORMANCE ADVICE - PROFILING

typedef struct
D3D12_QUERY_DATA_PIPELINE_STATISTICS 

{ 

UINT64 IAVertices ; 

UINT64 IAPrimitives ; 

UINT64 VSInvocations ; 

UINT64 GSInvocations ; 

UINT64 GSPrimitives ; 

UINT64 CInvocations ; 

UINT64 CPrimitives ; 

UINT64 PSInvocations ; 

UINT64 HSInvocations ; 

UINT64 DSInvocations ; 

UINT64 CSInvocations ;

} D3D12_QUERY_DATA_PIPELINE_STATISTICS;

http://gpuopen.com/gaming-product/tootle/
http://gpuopen.com/gaming-product/geometryfx/


10 GDC 2016

DESCRIPTOR SETS



11 GDC 2016

GDC 2016

ÁRoot signature:
Maximum size: 64 DWORD

Can contain 
Data (takes up a lot of space!)

Descriptors (2 DWORD)

Pointer to Descriptor Table

Keep a single Descriptor Heap
Use as Ringbuffer

Use static samplers
Maximum of 2032 

Do not count to the 64 DWORD limit

DESCRIPTOR SETS Root Signature
64 DWORD max

Const

SRV

CBV

Χ

Memory

DescriptorTable

DescriptorHeap

CBV

CBV



12 GDC 2016

GDC 2016

ÁOnlyput small, heavilyused
constantswhichchangeper draw
directly into the root signature

ÁSplit Descriptor Tables by
frequency of update

Put most volatile elements first

ÁUse D3D12_SHADER_VISIBILITYflag
Not a mask

Duplicate entries to set exact visibility

DESCRIPTOR SETS Root Signature
64 DWORD max

Const

Per Draw CBV 
(PS)

Per Draw CBV 
(VS)

Χ

Memory

DescriptorHeap

CBV

SRV

Per Frame CBV 
(PS)

Per Frame CBV 
(VS)

StaticCBV (All)

Per Material DT
(PS)

Per MeshCBV
(VS)

Per MeshCBV
(PS)

Χ



13 GDC 2016

GDC 2016

ÁRoot copied to SGPR on launch
Layout defined at compile time

hƴƭȅ ǿƘŀǘΩǎ ǊŜǉǳƛǊŜŘ ŦƻǊ ŜŀŎƘ shader
stage

DESCRIPTOR SETS Root Signature
(VS)

Const

Per Draw CBV

DescriptorHeap

CBV

SRV

Per Frame CBV 
(PS)

Per Frame CBV

StaticCBV

Per Material DT
(PS)

Per MeshCBV

Per MeshCBV
(PS)

Χ
Root Signature

(PS)

Const

Per Draw CBV



14 GDC 2016

GDC 2016

ÁRoot copied to SGPR on launch
Layout defined at compile time

hƴƭȅ ǿƘŀǘΩǎ ǊŜǉǳƛǊŜŘ ŦƻǊ ŜŀŎƘ shader
stage

Too many SGPR ->
Root Signature will spill into local 
memory

ÁMost frequently changed entries 
first

ÁAvoid spilling of Descriptor Tables! 

DESCRIPTOR SETS Root Signature
(VS)

Const

Per Draw CBV

DescriptorHeap

CBV

SRV

Spill Table

Per Frame CBV

StaticCBV

Per MeshCBV

Χ ƳǳƭǘƛǇƭŜ 
entries

Χ
Root Signature

(PS)

Const

Per Draw CBV

Spill Table

CBV

SRV

Descriptor
Table



15 GDC 2016

D3D12 ςADDITIONAL PERFORMANCE UNLEASHED

ASYNCQUEUES



16 GDC 2016

GDC 2016

Graphics
ÁCopy queue:

Used to copy data

Optimized for PCIetransfers

Does not steal shaderresources!

ÁCompute queue:
Use for copying local/local

Use for compute tasks that can run 
asyncwith graphics

ÁGraphics queue
Can do everything

Draws are usually the biggest workload

QUEUE TYPES

Compute

Copy



17 GDC 2016

GDC 2016

ÁAsyncǉǳŜǳŜ ǳǎŀƎŜ Ŏŀƴ Ǝŀƛƴ ŜȄǘǊŀ ǇŜǊŦƻǊƳŀƴŎŜ άŦƻǊ ŦǊŜŜέ
Helps you beat DirectX 11 performance

ÁResources are shared
Schedule workloads with different bottlenecks together

Shadows are usually limited by geometry throughput

Compute is usually bound by fetches, rarely ALU limited
Use LDS to optimize memory efficiency

Asynccompute will affect performance of the graphics queue
Keep this in mind when profiling ςkeep a synchronous path in your engine

QUEUE TYPES



18 GDC 2016

GDC 2016

ÁImplementation advice
Build a job based renderer

This will help with barriers, too!

Manually specify which tasks should run in parallel

ÁJobs should not be too small
Keep number of fences/frame in single digit range

Each signal stalls the frontend and flushes the pipeline

ASYNCQUEUE USAGE



19 GDC 2016

ASYNCCOMPUTE IN ASHES



20 GDC 2016

GDC 2016

WHERE OUR RENDERING GOES

Render time

Unit Shade

Terrain Shade

Rasterize

Lighting/Shadow Setup

Post Process



21 GDC 2016

GDC 2016

FRAME OBSERVATIONS

ÁLighting and most Shadow work is compute shader

ÁPost Process is also a compute shader

ÁWhat percent of frame is possible to put in a compute queue



22 GDC 2016

GDC 2016

WHERE OUR RENDERING GOES

Render time

Unit Shade

Terrain Shade

Rasterize

Lighting/Shadow Setup

Post Process



23 GDC 2016

SHADOW MAP

yTerrain projected shadows

ySimple tech

yBut wide Gaussian blur to prevent aliasing

yCan take 2ms ςbut, can be a frame late

yCould blur while frame is rendering



24 GDC 2016

POST PROCESS

y3 part post

ySimple Gaussian blur (narrow, 5x5)

yComplex glare effect (large, screen sized non symmetric lens effects)

yColor curve ςACES

yHappens and end of frame, nothing to overlap with
Or is there?



25 GDC 2016

FRAME OVERLAP

yOverlap the post of one frame with the beginning of the next frame

Post of Frame 
1

Rendering of Frame 1 Rendering of Frame 2 Rendering of Frame 3

Post of Frame 
2

Graphics Queue

Compute Queue



26 GDC 2016

WITHOUT INTRODUCING TOO MUCH LATENCY

yOverlapping frames could be complex in engine

yEngine queues up entire frame at time, no concept of previous frame 
during rendering

yTurns out we can have Direct3D 12 overlap frames for us



27 GDC 2016

BASIC IDEA

ySet number of queueableframes to 3 over 2

yCreate a separate present queue from graphics queue

yAt the end of the rendering, instead of issuing present ςissue a 
compute task and signal the post to render

yWhen post is completed ςsignals an alternate graphics queue to do 
the actual present



28 GDC 2016

FRAME OVERLAP

Post of Frame 
1

Rendering of Frame 1 Rendering of Frame 2 Rendering of Frame 3

Post of Frame 
2

Graphics Queue

Compute Queue

Present Queue

Present Present



29 GDC 2016

D3D12 SCHEDULER

yWill take care of inserting command stream

y.ǳǘΧ
No preemption on most cards

yThus, break apart frame to have multiple submits, trying to keep 
command buffers in the 1-2ms range

yWindows can then insert present at the boundary

yEnd up with only about ½ to 1/3 extra latency



30 GDC 2016

WHAT OUR FRAME LOOKS LIKE IN GPUVIEW



31 GDC 2016

PERFORMANCE INCREASE ~15%

0

10

20

30

40

50

60

70

80

Fury X, 1080pFuryX, 2160p390X, 1080p 390X,2160p

Async On

Async Off



32 GDC 2016

RESOURCE MANAGEMENT



33 GDC 2016

GDC 2016

ÁOS component handles 
residency

(on each command buffer)

ÁMemory filled over time, mostly 
straight into video

ÁEventually overflows

ÁBumped to system memory

DIRECT3D 11 MEMORY MANAGEMENT

Video
Memory

System (PCIE)
Memory

Rendertarget

Rendertarget

Depth Buffer

Textures

Dynamic Buffers

Static Buffers

Textures

Textures



34 GDC 2016

GDC 2016

ÁPriority system under the hood
RT or DS or UAV unlikely to move

i.e. high bandwidth read write 
surface

ÁStill a chance of something 
important moving

ÁΧ ƴƻōƻŘȅ ǿƘƻ ƴƻǘƛŎŜŘ ƛǘ 
seemed to like it very much!

DIRECT3D 11 MEMORY MANAGEMENT

Video
Memory

System (PCIE)
Memory

Rendertarget

Rendertarget

Depth Buffer

Textures

Dynamic Buffers

Static Buffers

Textures

Textures

Static Buffers



35 GDC 2016

GDC 2016

ÁTells the appwhere the limit is
The app knows what resources are important better than the OS/driver

Á¸ƻǳ Ŏŀƴ ǎŜŜ ǘƘŀǘ ƛǘΩǎ ŀōƻǳǘ ǘƻ Ǝƻ ǿǊƻƴƎ
Intervene!

Use lower resolution textures, drop higher mips, change formats to BC1

Move less demanding resources to system memory

hǊ ŘƻƴΩǘΦ
It will still migrate as a backup plan

Probably works out OK for small oversubscriptions, 5-10% or so

²ƛƭƭ ǇǊƻōŀōƭȅ ōŜ ŀ ǇǊŜǘǘȅ ŀǿŦǳƭ ǳǎŜǊ ŜȄǇŜǊƛŜƴŎŜ ƛŦ ƛǘΩǎ нл҈ Ǉƭǳǎ

Much more likely to see stuttering and inconsistent framerates

WHAT WDDM2 DOES:




